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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2515

THE LINEARIZED CHARACTERISTICS METHOD AND ITS APPLICATION
TO PRACTICAL NONLINEAR SUPERSONIC PROBLEMS

By Antonio Ferri
SUMMARY

The method of characteristics has been linearized by assuming that
the flow field can be represented as a basic flow field determined by
nonlinearized methods and a linearized superposed flow field that
accounts for small changes of boundary conditions. The method has been
applied to two-dimensional rotational flow where the basic flow is
potential flow and to axially symmetric problems where conical flows
have been used as the basic flows. In both cases the method allows the -
determination of the flow field to be simplified and the numerical work
to be reduced to a few calculations. The calculation of axially sym-
metric flow can be gimplified if tabulated values of some coefficients
of the conical flow are obtained. The method has also been applied to
slender bodlies without symmetry and to some three-dimensional wing
problems where two-dimensional flow can be used as the basic flow. Both
problems were unsolved before in the approximation of nonlinearized flow.

INTRODUCTION

The use of the method of characteristics for the solution of
supersonic-flow problems requires numerical procedures which are lengthy
and involved and which must be repeated for each set of boundary condi-
tions. The method has received general practical application only for
two-dimensional or axially symmetrical problems in steady flow and one-
" dimensional or quasi-one-dimensional nonsteady flow, and only very few
cases of general three-dimensional flow have yet been investigated.

Many problems have been investigated at present by means of the
linearized theory in which the disturbance-velocity components (defined
as the difference between the local and the free-stream components of
the velocity) are considered and are small, so that terms of second
order or higher can be neglected. In the present paper a simplification
ig introduced in the equations of motion based on the assumption that
one of the velocity components or the variation of the velocity com-
ponents as a function of a given parameter can be considered small, so
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that terms of second or higher order in the quantities considered small
can be neglected. When one of the velocity components.is assumed to be
small, the other two velocity components can be expressed in two parts, ’
one of which is large and is a functlon only of two coordinate positions,

and the other of which is small, of the same order as the third velocity
component, and is a function of all three coordinates,

If the variations of velocity components as functions of a given
parameter are considered small, all three velocity components can be
expregsed in two parts. One, large, is independent of the parameter
considered, and the other, small, is a function of the parameter con-
sidered. When the velocity components are substituted into the differ-
ential equations, the equations can be divided into two parts, and the
differential equations ‘containing the velocity components considered small
become linear; therefore, superposition of solutions is possible. With
this assumption the flow field can be represented for any condition by
the superposition on a nonlinear basic flow field of a linearized flow
perturbation. The flow field, which represents the variation of the
basic flow due to the changes of the geometrical parameter considered,
changes linearly with the parameter. Because of the simplification,
the superposed flow field is defined by differential equations of hyper-
bolic type which have characteristic surfaces equal to the characteristic
surfaces of the basic flow field and known coefficient; therefore, the
superposed flow field can be obtained directly without the iteration
process along the characteristic net of the basic flow.

A particular application of the linearized characteristics method
has been discussed in references 1, 2, and 3 in which bodies of revo- »
lution at small angles of attack have been considered. In the present
paper the basic concept of the linearization is discussed and examples
of application to two-dimensional rotational flow, to conical flow, to
axially symmetric flow, and to some general three-dimensional problems,
are discussed. From these examples, other applications of the same method
to supersonic steady- or nonsteady-flow problems can be visualized. TFor
example, the method can also be applied to the determination of the flow
field in supersonic compressors or turbines having supersonic relative
velocity inside the passage. In this case, the two-dimensional flow of
the cascade of the blades at each radial station or the axially sym-
metric flow can be assumed as the basic flow. In the first case the
radial component of the velocity must be assumed to be small, while in
the second case, the tangential component of the velocity must be
assumed to be small,

SYMBOLS

a,b,c,d,e coefficients of the variables in the characteristic equa- 4
tions (defined case by case)
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Voo Vy

E,M5€

Subscripts:
o]

leeen

speed of sound

coefficient (7a-21 (uoun + Vovn)>
o

coefficients defined by equations (20) and (25)

pressure coefficient

Mach number

gas constant or radius of hodograph diagram

entropy

velocity components along the x-, y-, and z-axes in Cartesian
coordinates or along x- and y-axes and perpendicular to

the meridian xy-plane in cylindrical coordinates

velocity components in polar coordinates

tangential and normal velocity components in front of the
shock

intensity of the velocity vector
Mach angle

ratio of specific heats

inclination of the characteristic lines in the plane
z = Constant or 6 = Constant

coordinate of the meridian xy-plane in cylindrical coordi-
nates or of the r¥-plane in polar coordinates

polar coordinates

inclination of the velocity vector with respect to the
X-axis

components of the rotation along the x-, y-, and z-aXes

properties of the basic flow

properties of the superposed linearized flow fields
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4
THE EQUATIONS OF THE LINEARIZED CHARACTERISTIC SYSTEM
| 4
Consider, for example, a flow field defined. by a velocity vector
V(u,v,w) the components of which can be expressed in the form
N
N
u=uo+E anu,
1
N
v = vy + E anvy r (1)
I ,
-
: N
w = E anWn
I J
The relation between entropy and rotation states
: &
= .o g .
curl VXV = & grad S (2)
7R .
Assume that u, and Vo, are functions only of x and Yy, then by
neglecting terms of the order of ang, equation (2) becomes
' )
o ,
a_s_a_=_vo<5_*'g_éu_o>_voz%m_ig)-(%_%)Zanvn
dx 7R ox oy ox oy ox oy
38 a2 v,  du, }z: ovy - Ou, ov, duy ,
== =ul— - =—2}+u — - — + |22
dy R \ex T8 /) M T )t TS z % P (3)
2 ow, ov. ) oV,
.3_§§_=v0§ an__g__n_uo§ ap—B - —B
oz 7R oy oz dz ox
. »
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Therefore, the entropy field can be expressed as-

N N a
‘ 3 _ 3o S 9Sn
9x  Ox * fn ox
1
3. o 38
§L4+Z}V£ & (1)
dy Oy 1 dy
N_
z dz
1
-/
Assume that each coefficient al + e . 8p is constant in the

entire region of the flow field where it is not zero and is small, so
that terms of the order of an2 or higher can be neglected. In this

flow a basic flow fleld exists, represented by the velocity
vector Vo(uo,vo) and by the entropy distribution S55 on which a

linearized flow 1s superposed, represented by a summation of N three-
dimensional flow fields, each of which is proportional to the corre-
sponding coefficient a,. The basic flow field is a two-dimensional

flow if Cartesian coordinates are used or an axially symmetric flow if
cylindrical coordinates are used and can be determined by known methods.
In a similar way, a general three-dimensional flow field can be assumed
for basic flow if the flow field can be obtained by simple analysis.

The equation of motion obtained from continuity, momentum, and
energy equations can be expressed in Cartesian coordinates in the form

Ju ul ov Ve ow we uvfou , ov
Qufy J L ), 9V J V) 9y ¥ ) wou OV
Bx< a2> * 6y< 82> * 82( a2 a2\oy ’ ox

uvw(ou , ow) _ wv(ov , ow)| _ g
a2<5z * 8x> a2<5z * By) (5)
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while, in cylindrical coordinates, the equation becomes

dufy _uB),vf _v2 5W1_12_>_ﬂ§l1. av)
5x< a2>+ay< a® /+y8cp a’ al\dy +5x

wuf du , ow) _ wv[ Ov . ow),¥.
a2<yaq>+ax> az(yacp“ay)*y ° (6)

By use of equations (1), expression (5) becomes

_|9ug 1. ug? . ool Vo2 _ uoVo /dug N Ivo\| _
aX 8.02 By a02 a02 \ay ox -

<Bud . Bvo>uovoAn + uozn + Vouy, (7

70)

where

The basic flow is a two-dimensional flow, and the first part of
equation (7) must be zero; therefore, the second part of the equation
must also be equal to zero and, for each value of n,
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owy, . duy, - u02 N ovy, 1 vo2 _ Ug¥g vy N duy, _
oz ox age oy ag2 age \0x oy

Buo <2uoun + u02An> + Vo <2V ovn *+ v021‘—n>

ox 8.02 By 302
ou,, . OV o\UVAL + UV + Vou, - (8)
ay Bx 3_02

Equation (8) is a differential equation of hyperbolic type because

uo2 + vo2 > a02 and the characteristic surfaces are cylindrical surfaces
perpendicular to the plane 2z = Constant with generatrices coincident

with the characteristic lines of the two-dimensional flow. This can be

gseen from the fact that the coefficients of the derivatives QEQ, ézg,
ox oy
dv,  ou,
and S—— + g—— of equation (8) are expressed as functions of the prop-
X Y

erties of the basic flow and are the same as the coefficients of the

derivatives BuO, éZEg and L) + o which define the basic flow,
ox oy "y ox
\¢
and the coefficient of 5-2 is one (see, for example, reference k4,
z

page 282). Therefore, the disturbance flow field Vn(un’vn’wh) can be

obtained by the method of characteristics by moving along the charac-
teristics surfaces which are cylindrical. The characteristic net, which
for the general case must be drawn in spatial coordinates, can be drawn
in this case only once for any value of a and n and is equal to the
net of the two-dimensional flow. Equation (8) can be transformed for

auo allo Bvo
ox 7 oy’ ox’
and ézg are known terms and are given from the two-dimensional flow

y
field.

practical use. In the equation, the terms in ugv,,

Asgume, in the plane xy, polar components for V and ¢ for the
velocity, defined by

o
I

o = Vo COs Q4

(9)
v

<
i

o sin @,
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and, because higher-order terms are neglected,

uy = Vp cos @, - 9V, 8in @,

, (10)
Vp = Vy 8in 9, + @,V cos @,
where
V=V, +a,Vy
(11)
P =@ + 8,9
If n is the'norx'nal to the projeétion of the streamline in the V
plane 2z = Constant, the derivative g—s’- is expressed by
n
8 __8y,8u (12)
on xV 9JyV

By use of equations (4) and (1), equation (12) becomes

% _ (u Y e a) ) e, (aso Y h) + 2 e
on ox ox v, + Z anVy Jy ‘ 0 dy Vg + Z anVy,

(13)
By considering only the lowest-order terms, equation (13) becomes
ds _ 98, S, 38, 98, 1
= + + -V, - vV )+ — (V. - uV \—x
3 " o, ®n 5a. E an|” 3% ("n¥o - Vo n) Sy (2n¥o 0 n)vog

(14)
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But,
‘ 90y v, - vV ) + So(u v, - ugry) = ~ov (e Yo 4 Bo Vo) g
" (Vo o'n) Sy (Vo o'n) = -PVo 3x Vo  dy V,
because the right term contains as a factor the variation of entropy
along the streamline of the basic flow; therefore,
2 2
ovy, ) duy, _ 3 oS, (Va e ap= 08, (15)
ox - 9oy 7RV ong v, 7RV, ong
where n, 1is the normal to the streamline of the basic flow in the
plane xy.

After several transformations the fdllowing équations can be
obtained (see reference 2): In the plane - z = Constant along the char-
acteristic line defined by

dy _ _ , ‘
. Tx =2 T (B %) - (16)
. the following equation is valid:

do,, sindg, 1 ds, .

dw; sin tan
n 1 Bo Bo o + =
ax cos(mo + BO) 7R dn,

1 n _
- + = —= = tan
dz Vv, COS(BO + 95) V, dx g

v - | |
PpBy + 5o Cp =0 , (17
o}

and along the characterigtic line of the second family defined by

dy _ Ap = tan(@o - BO) (18)
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the following equation is valid:

(% g sinBotenfy g AWy 3 o 9y sindg, 1 a8,
dz  V, cos(9, - Bo) Vo dx V, °.dx  cos(Py - By) 7R dn,
Vo 4
@By + 2 Cp = 0 (19)

Vo

where B,, B,, C,, and C, are -coefficient functions of X, ¥, Vo

- d av,
Pos 3%9’ and <EYQ) <——9) along the characteristic lines of the first
1 2

" dx dx

and second families at each point and are independent of V,, @,
and w,, and, therefore, can be determined once for the basic flow and
used for any kind of disturbance flow in the limits of the approximation

accepted. The coefficients B;, By, Ci, and C, are given by the
following expressions:

[ 4, :
5 - 1 sin'By dSy jL<dVo> cos (9, - B,) (208)
L " Cos By cos(@, + Bo)| 7R dng  Vo\dx /p | sim B
"
a1 _ sin'B, 48, ;L<dvo> cos (P, + Bg) (200)
2" cos B, cos (9, - B,) YR dn, V \dx /; sin B,
a8 |
a -
Cl = L<_V.2> tangﬁo + 7 1 -
Vo \dx 1 2 sineﬁo coszﬁo
2 dSO sin3Bo ) ;L<iva> cos(@o - Bo) '1 - 1
7R dn, COS<®O + Bo) Voldx /, cos(cpO + Bo)cosgﬁo 2 sin2Bo

(20c)
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av . -
Cp = Li_0) [tanZg + y -1 +
VO dX o . 2 2
2 2 sin Bo cos BO

o 48, sindp, . j;<dV0). cos(P, + BS) 1 RS
7R dno.cos<¢o - Bo) Voldx /g C°S<@o - Bo) coszBo 2 singﬁO

(20d)

av
where (EES) is the derivative along the characteristic of the first
1

d
family and (a§9> , along the characteristic of the second family.
2

In order to determine the value of w, at each point of the char-

acteristic net, the following relations can be used in the plane
z = Constant:

b b
dy oz
- %u _ ow
=32 3 0 - (21)
£ =9Y _ Qu
ox dy

and, if s, 1s a streamline projection in the plane =z = Constant,

2
§+§.Y.=a_lv_+asa‘_.

v
= Y ® 2
Os ox V ¥ dy V v v dz dz Oz YRV (22)
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In the approximation accepted,

v _ oy
dz f.zg:: “n oz
S (23)
3 _ o8
0z —Zan oz
-~
therefore,
oW, ov. ds, a.” .
1 n_1>n _-"n %
VoS Tt z (24)

o o Z aZ 7R‘V‘o

where 8, ié the streamline of the basic flow.

Equation (24) permits the determination of the value of w at each
point of the plane z = Constant as a function of the local variation
of V, in the z-direction. Therefore, by means of a step-by-step pro-

cedure, all the flow field can be determined by working in planes
= Constant where only one characteristic net must be used, by means

. of equations (17) and (19) and by determining the value of QE— at each
. So
point of the net by means of equation (24). The calculations are started
from the flow field defined, or along a surface which is not a charac-
teristic surface, or along a characteristic surface and a stream surface.
The flow field at the starting surface must be determined from the
boundary conditions. If the starting surface is a shock wave, the flow
at the shock surface must be obtained from the physical properties of
the shock wave related to the boundary conditions considered. Relations
between boundary conditions and shock waves are presented in detail
subsequently for the problems considered.

Similar equations can be obtained by using cyllndrlcal coordinates
in place of Cartesian coordinates.

Equations (17) and (19) remain the same. Only the first term
ow ow

changes, =~ becomes

oz vy 08

and the coefficients Bl and B2 beconme
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. A
B! = 1 | sin B, sin(@o - Bo) N Bl
1 cos B, cos(P, + Bo) y 7
)
o - , N sin B, sin‘(cpo + Bo) ‘B
cos B cos(@o - Bo) Yy J

Equation (25) for cylindrical coordinates becomes (see reference 2,
equation (9c))

3w oV, ao2 oS, v, sin 6,

IS4, = + - 26
(Bsé) y 06 7RV, ¥ a6 y (26)
6=Constant

The use of the linearized characteristic system 1s simpler in many
cases than the complete characteristic system and reduces in some prac-
tical applications the extent of the numerical work required, especially
if solutions of many similar problems are required. The same concept.
can also be easily applied in the field of nonsteady or relative motion
of flows.

The flow field around slender bodies without axlal symmetry can be
obtained by m:ans of linearized methods, and some practical three-
dimensional problems not analyzed before in the approximation of non-
linearized flow can be analyzed by this method.

In the next sections some typical possible'applications are
presented.

SOME TYPICAL APPLICATIONS OF THE LINEARIZED CHARACTERISTICS METHOD

Two-Dimensional Rotational Flow Fields

Two-dimengional potential flow permits hodograph solutions, and,
therefore, any kind of two-dimensional supersonic potential-flow solu-
tion can be obtained in the hodograph plane; the numerical solution in
the physical plane then requires only the construction of a character-
igtic net in order to find the positlion in the physical plane of each
point of the hodograph plane. The solutions of problems in which
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boundary conditions are given only along a streamline are very simple

in the approximation of potential flow because in this case the velocity
is constant along a' family of characteristic lines (single-wave flow);
however, similar calculations for rotational flow are much more involved,
because a step-by-step procedure is required for the solution on the
hodograph plane as well as for the construction of the characteristic
net. By means of the linearized characteristics method a rotational
flow field can be considered as a modification of a potential flow
field, and the linearized superposed flow is the flow which takes into
account the effect of the presence of shock waves and the effect of
rotation in the flow.

Consider, for example, a two-dimensional profile which produces a
shock wave at the leading edge (fig. 1). If the profile is curved, the
shock isg curved, and the flow behind the shock is rotational. Assume
that the flow field behind the shock can be expressed as

\

u=u, huy s v.=‘vo + vy
or

V=V, +Vy , 9 =, + ¢1v e (27)
and |

§ =5 J

where u, and Vo are the velocity components defined by a potential

flow field, which in this case is a single-wave flow, g;g along the
1
characteristic lines of the first family is zero, and Wy, Vo, and Sl

represent the flow field that takes into account the reflections
occurring at the shock and the effects of the entropy gradient. The
flow field represented by Vo, and P, can be immediately determined,
and V, and ¢, are constant along the characteristic lines of the

first family, which are straight lines. The characteristic net of the
flow V9, can be drawn in a short time. Then, along the characteristic

of the first family,

1 sineﬁo B. dx Vl

o 7R
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where
e A i)
cos B, cos(Cpo + Bo) Vo\dx /, sin B, :
and
dVo) 1 cos(9, - Bo) 1 y -1 |
. = (___ 1 1+ : (30)
1 dx /o Vg cos(mo + 50) coszﬂo< 2 sinQBo

and, along the characteristic of the second family,

. .. 2
sin™B Vy av -
L av, + tan B, do; + © g8, + L —Oftan B_ + y -1 =0
7o V1 0 R LT © " 2 oinp, cos?hy

(31)

Equations (29) and (31) can be simplified by introducing the gra-
dients (V°>x and (Qo + Bo)x along the x-axis defined as

v,

(Vo)X = <g;;‘)y_

To(@o + 8
(® + Bo), = [(T—O)‘Jy_ (32)

It can be seen from figure'l that, at any point A of ordinate y, om

the characteristic line a, crossing the axis at Ay, the vari-

av :
ation (&ig) along the characteristic line of the second family at A
1
is
cot (9, + SO)A

avg, o
[iég—)%}A = (Vox)Ao 1- cot(@o - BO)A yAIonl+ Bo);] (33)

1 - Ao

sin2(¢o + BO)AO
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because Bo end ¢, are the same at A and at A,. Therefore,

LdVO) __=8 %
Vo<dx A l-%v, ‘ (34)

where a and b are constants along each characteristic line of the
first family., Then equation (28) along the characteristic line of the
first family becomes

.d;VA‘. - tan ‘3 d_Q) + SinEBo ds - Q cos (q)o - BO) 1l a d'y
Vo ° LT Tyr L "Lsin(p + By) cos B, sin By 1 - by
Vif . y-1\ady cos(9,-By) 1. _
ol 2 gin Bo/l - by s1n6mo + By) cosB,
Therefore, if
. V. 7
a = 2 Vz‘
sinz(@o + BO) ° .
and o ? | (36) N
b = (Cpo + B,O)X
sine((po + BO)
w
the equation along the first characteristic line becomes
avy 5in%p, —
v;— - tan By AP + — 7 dSlk+ Ql.i»d lpg(; - by) -
- \' ' .
1+ —JL-—AL—-tan B L _q log(l - by) = O , (37)
. 2 oy .
2 sin"B, Yo | . : :
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and, along the second characteristic line,

VvV, dv -
712 Po g8, + 1k 0 ftanp, + 7 -1 =0
7R o Vo 2 sing, cos?B,,

—;— + tan BO d¢l +

(38)

All the coefficients of equations (37) and (38) are constant along
characteristic lines of the first family and can be calculated at few

points on the x-axis.

The coefficients of equations (37) and (38) are independent of Oy
and V;; therefore, with one calculation from a point A and C of the
net of figure 1 the values of Vl and ? at a point B can be
obtained directly without the necessity of an iteration process,

including also terms of the order of (A.x)2 in each step. Indeed, if
all the quantities which are variable along the characteristic lines are

expressed in the form

-
ag = a, + (g%)AAx + -g-sgéx; + o{ax3)
and ) r (39)
da) _ (3 32 2
(§§>B = <§%>A + 5;% ax + o{ax?)
J
then
ag - ay = K%)A Ax + (-S-i-)B A}E]% + olax3) (40)

Consider now equations (37) and (38). At point C equation (37) has the

form
1l _ (1 1 ac - (de
<dx >C - (8x C “c *\& C bc * cplC(‘dX>C f VlC(dx>C
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while at point B it has the form

(52), - (), o+ (22), 2 v o0,20). i),

then, from equation (40),
(e (3, - 2
21y - Tag) = (53, &+ a?BA"'[S;CaC" S Jp B *

d d - -
Gl e (2, ol - ol ), )]

B c
(41)
But,
E"l) ?31_>a =(§’L1_+5q’1>ac+anf+.3

), = (2 o - [, () o ot
Indeed,

) - [(2) (22 o 2

(BxBaB-[(axC+ a—xg—-c |:+ Aﬂ+0(Ax
and

G, (5, o - oD, o () 2) -

%,
3 —gk %Ax + ofax3)

sz
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and also
o9 op ag + g | Bgcp
(—l> + < l) ¢ Ax = 2<B_®}_> 8 + 8 21 Ax +
dx /¢ \ox /g 2 ox /¢ x~ /¢

B2, o

Therefore, equation (37) along the first characteristic line, terms of
the order of (XZB - xc)3 being neglected, can be written in the form

(Y15 - vlc)‘t " (Pag  Pag)® o * R M Peg

\' +V
1 - bpyp 1g 1

1o ——B—> +o. \+—B__C
2.( ®1- beye (q)ls 10) Vs
(42)

and equation (38) along the second characteristic line, terms of the
order of (XB - xA)3 being neglected, can be written in the form

1 1
Vi_. -V —_—+ =\ + (O, - O tan B, + tan B +
( 13 1A)<V0A VoB> ( 1p lA)( °B OA)
81, - 51 ' v -1
_.i_&_R__A(sinZBOB + SiHEBoA) + \-’—]:-2-<tan260 + - inZB Z > +
o] 8 o cos o B

Vi/f,. .2 y -1 ' :
=1t + Vo, - V =0 4
EO( o + 3 sin?p, cosEBOEIA ( °B OA) (43)
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Because of the possibility of congidering directly in the calculations

terms of the order of (Ax)® also, large steps can be used in the
characteristic net and the effect of entropy gradients can be easily
evaluated, after the basic characteristic net and a few streamlines of
the basic flow have been determined and the coefficients of equa~
tions (39) and (40) calculated at a few points on the axis.

All the coefficients are constant along each characteristic line
of the first family; therefore, in going from B to D, only the terms
containing S5, and y must be changed and the calculations are simpli~

fied to some extent with respect to the rotational-flow charascteristic
calculations.
Axially Symmetric Flow Fields

For axially symmetric flow, the equation of linearized character-
istics becomes:

i 2
1 d.Vl dcpl 81n BO d.Sl 1 Yi _
ra tan B, tSEren ®B "+ 7 ¢, =0 (4k)
along the characteristic line Az = tan(ﬁo + ¢o) and
.2
1 4V d; , 8inB, d5; LS P
Vom TPen TR @ T Wty %70 )

along the line M\, = tan(@o - Bo) where Bl', BE', Cis and Cp are
defined by equations (25) and (20).

The introduction of equations (44) and (45) simplifies noticeably
the numerical calculationg without affecting sensibly the precision of
the results. The practical use can be as follows: A basic body shape
ig determined first by means of characteristic calculations, and the
characteristic net is then obtained. The basic calculations must be
extended in a region in front of the shock wave determined with the
usual procedure (for example, reference 3), and in a region inside the
body as shown in figure 2 in order to determine all the flow field
necessary. Thus, a reduced number of points of the characteristic net
are chosen at which the superposed flow field for each boundary condi-
tion different from the basic shape will be determined. The number of
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points required depends on the magnitude of the superposed flow fleld;
however, the number is usually small, because for each step between two
points A and B the disturbance veloclty can be expressed in the form

. av a%y 2
B A \dX /p ax? /,
d2Vl Ax?
where the term -5 ‘is also included because, In the differ-
dx
A

enttal equations (Lk4) and (L45), the coefficlents of the differential
equations are independent of the solution and are known at both points.
If the entropy term S, 1is neglected, by spplying finite-difference
methods the veloclty components at a given point g5 of the character-
istic net can be expressed from the values at two points f5 and gh in
the form:

= L-n_ m+ L _ me-1L
- l-r p+a qQ-D
(Vl)g5 = (Vl)f5 T+r " (Ql)f5 T+ r (Ql)s5 1+ 1 (48)

= 1 l-n_ l-r m+ 1L _
(¢l)g5 T ma-L . 4 -Ap(vl)gu 1+n (Vl)f5 l+r (Ql)gu l1+n
l+n 1l+r

p+a :
(PL)es 757 (49)

where (wl)gh, (Ql)f5’ (Vl)gh, and (Vl)f5 are functions of the bound-
ary conditions considered, while the coefficients L, m, n, p, 4q,
and r are functions only of the basic flow field and, therefore, must
be determined only once for any boundary condlition considered. These

coefficients are:




22 NACA TN 2515

(Vo tan Bo) , * (Vo tan Bo) A
L = g>
2
m=(X,_ =X v B, ' + (Vv B, ' L
(i~ %20)| () 4 (17, ), ),
= - c,) o+ (cq) |&
n = (%5 Xgu)L( l)gh +( 1)g;|;+
> (50)
o= (Vo tan By) _ + (Vg tan Bo)‘ﬁ
2
_ [ 1 t l
e = (%g5 = *s5) _{Vo)@(Be )g5 + (Vo) o2 ) f;J n
x r—c) + () &
T = - x iy
(*e5 = *15)|(%2) s 2f;lu
~ | J
If the entropy terms in %g% are considered, two more terms in (Sl)g5

and (Sl) " mist be considered in equations (47) and (48) and two more
g

terms in (Sl)f5 and. <Sl)gh in equation (49). However, because these

terms are small, they can usually be neglected in practical calculations.

Because all the coefficients are determined only once, the deter-
mination of (Vl) 5 or (¢l> 5 for each boundary condition is simple.
g g

Points at the boundary can be investigated by means of equations (47),
(48), and (49). Points on the shock can be analyzed in a similar
manner. A practical calculation can be performed in the following way:
The basic flow field and the number of points in which the superposed
flow field will be considered having been determined, the new boundary
conditions (shape of the body) are placed in the characteristic net
(fig. 3). If A is the point where the basic body departs from conical
shape and OBC is the new boundary condition, the flow field between the
surface of the conical body OB and the conical shock OE are known from
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cone calculations; therefore, the values of V and ¢ at each point Ba,
la, 2a, 3a, and Ea of the basic characteristic net are determined, and
by difference the values of V; and @; can be obtained. From al the

flow at the point L of the boundary can be determined from equation (L48)
where P is known at L, and the coefficients at L can be determined by

linear interpolation between bl and cl. From the values of V; and @

at al and L1, the corresponding values at bl are interpolated. Then all
the values for the line b can be obtained. For the determination of Vl

and P at a point F on the shock wave, the equations of the shock wave

and equation (47) are valid. At the point F the values of ¢, and Vg
ov

are known, and from the equations of the shock wave the value of S— as

P
function of ¢ can be determined. (The value of @ fixes the deviation
across the shock wave.) Therefore,

(Mg = (Vo) + (), = (Vo) + (§5)(®0), (51

Then, equation (47), applied between the points 4b and F, gives

_ 5y 1l-mn _ m+ L _ m-L
- (Vl)N 1+n Gpl)n 1+n (q)l)F 1+n (52)

and the value of (@l) can be determined.
F

The work required in the calculation of the flow field for the
basic body and the determination of the coefficients L, m, n, p, gq,
and T can be reduced to a minimum if conical bodies are assumed as
basic bodies for the calculations, because in this case the basic flow
is available in tabulated values (reference 5) and the coefficients L,
m, n, p, ¢, and 1r are functions only of the poclar coordinate V.

For conical flow, the calculations can be performed in the
following way: From conical-flow calculations, the values of v, and

vp as functions of V¥ are known, where v, 1is the radial component
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and v, the normal component of the flow field in polar coordinates

referred to the limiting velocity (fig. 4). The following expressions
for Vo, Bo, and P, can be determined from the cone calculations:

n r
1 _ 2 ;2
;0—2-—1+7_18inﬁo
r (53)
P =9 +7

V.

tan y = 2 :

4 Ty J

Therefore, B_ + @, and @_- B_ are known as functions of V. From
’ o] o) o o]

a point A on the conical body, the characteristic line of the first
family AC and of the second family AD can be drawn. The line is defined
by the expressions o ' ' - E :

yg = ¥y _tan(B +9), + tan(p + ) - .
Xg - X 2

Vg = ¥y, tan(B - Q)A + tan(p - ?)p
¥~ % | 2

In order to construct a characteristic net that requires only a small
amount of calculation, the points of the net are chosen along straight
lines from O so that the conical property of the flow can be utilized.
The net can be constructed by fixing the steps along the body.

When point B is chosen along AO, the point E along AC 'is determined
by drawing BE parallel to AF. From E and F (along OE and AD) the lines
GE parallel to LF and FG parallel to EH can be determined, and the
point G can be obtained. From G and H, point M can be obtained, and by
proceeding in a similar way, all the characteristic net can be deter-
mined. The coefficients of equations (50) are the same for each point N,
F, and E along the same radius. The tabulated values are given only in
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the region between the body and the shock wave; however, the calcu-
lations can be extended by means of conical calculations. For example,
from the following equations (see, for example, reference 4, p. 243,

and the following pages)

Ve + vy cot V¥
— (5%)
n

(- D1 - 70" )y

(R)WC ==

1 -

and

(vn)WC+AW = (Vh)wc cos A} + (R - Yr)wc sén AV

s (55)

(vr)wbtAw - (vn)wc sin AV - (R - vr)Wc cos AV + (R)WC |

(where R is the radius of curvature of the streamline in the hodo-
graph plane); therefore, the characteristic net can be extended to the
outside flow. For conical flow the coefficients B;', By, Cy, and Cop
can be determined as functions of VY. For conical flow, coef=-

ficient B! of equation (25) becomes

) . sin B sin(@o - Bo) )
cos B cos(@o + BO) y

By' =

1 ﬂ’g(@l‘> cos (@ - Po)
Vo d¥ \dx Mo sin B,
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and Cl becomes

_:L_dV_o_(d\lf> cos(CPo - Bo) 1 <1 L2 -1 >

Vo ¥ \ax/y cos(9, + By) cosp,\ 2 sins,
but |
(&) - ZYE0 rPo - ¥) (56)
X A y cos(cpo + Bo)
and
sin ¥ gin(¥ - @ + B
(%l]f) = - ( (o] O) (57)
X Mo y cos(q)o - Bo)
Therefore,

2 - |p v (&
5[ |

1 E sin B, sin(q)o - Bo)

cos B ° ain ¥ sin((po + By - \If)

+ .

(av5> 1 sin(y - 9, + Bg) | (58a)
d¥ /y sin B sin(CPo + Bo - \ll) ’
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and

27

L =B,V (-dx)
2’0
av [ ay Ao v

_ 1 sin By sin(cpo + Bo)

= \'A +
cos Bol:o gin V¥ sin(‘lf - @, + Bo)

sin(@o + Bo - V{} (56b)

<dVo> 1
d¥ /y sin Bg sin(ﬂr -+ Bo)

- 1 dVO) 1 sinzﬁ + _r=1\_
Vo<dv W[;OSQBO< © 2 sineﬁo

1y, -1 sin(V = @, + Bo) |
cosgﬁo< 2 sing, sin(e_ + B, - V)

=g@ﬂ L (sin2p, + L= L) .
Voldy | co8 Bo 2 sin"Bq

L (., 7= 1\%0(% * Bo - V)
+
cos2[30< 2 sin230>sin(\lr - P, BO)
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and

Vn Ve + Vp cqt ¥

av Vo 2v, 2

T+ D - vR)

If equations (58) arevused, the coefficients of equations (50) can be
exXpressed ag follows:

.
n= i(“'@ - V) (3g4 * 2g5)
n = %(Wés - Wgh)(cgh + cg5> |

> (59)
2= 5 (%5~ Ves) (Pes + Pgo)
7= g (s - Vo) (35 * Ogs) ]

Because the coefficients a, b, ¢, and 4 are functions only
of V¥ and of the free-stream Mach number M, they need to be calculated
only once for different values of M; and given in tabulated form, and,

therefore, the calculation of any flow field for which the basic flow
can be considered a conical flow can be reduced to the solution of a
few linear equations with known coefficients.

In order to try the method, the flow around an ogive, as shown in
figure 5, has been determined at M = 3.016, by the method of character-
istics and by the method of linearized characteristics. In figure 5 the
usual characteristic net is shown, while in figure 6 the linearized
characteristic net and the basic body are presented. As a first basic
body the cone chosen is the cone tangent to the apex having a cone angle
of 12.5°. The cone chosen is not the most convenient because the values
of @ at the end of the ogive. are large, and a better approximation

would be obtained if a cone of smaller cone angle would be considered as
the basic body. A cone somewhat different from the ogive considered has
been chosen in order to have some information on the approximation of
the method for sensible variations of the shape of the body from the
basgic body.
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Downstream of the characterigtic line AB, the velocity com-
ponents V; and P, would become large because at the surface of the

body the component ¢ is quite different from the component ¢, of

the basic flow; therefore, the flow determination in the region down-
stream of the line AB has been considered as a new problem, defined by
the flow along AB and from the streamline that represents the body
shape. In this region a new basic flow has been considered. Again, a
conical flow field has been assumed as the basic flow. From the values
of @ and V at B and A, and from the order of magnitude of ¢ down=
stream along the body, a conical flow field that would give a small
disturbance component in thig region has been selected. The cone chosen
for the second part is a 5° cone at M = 3.077. The cone is entirely
contained within the body considered in the region used in the calcu-
lations as shown in figure 6 and the most convenient reglon of the
conical flow field is used for the calculations.

In order to pass from one bagsic body shape to the other, the com-
ponents V; and Py along the characteristic line AB for the second
basic body must be determined. This operation can be performed by
determining the value of V, ' + V;' and 9,' + ¢;' at the points a,
b, and n of figure 6 for the first basic body, by interpolating the
values at the points a', b*, and n' between characteristics 1 and 2
along the characteristic of the other family and then determining the
new value of V;" and ¢l" for the second basic body along AB from

the expressions

¢l =Q - ?o
and

V=V.'+ vy

¢ = Qo' + ¢l'

vhere V." and o," are the values of V and ¢ for the second basic
body at the position considered and V,' and ¢,', the values for the
first basic body.
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The calculations by linearized characteristics required the solu-
tion of 11 linear equations of the type of equation (47), (48), or (L9)
with one unknown and the interpolation of four points, which can be done
in a very short time (of the order of 1 hour) when the net is drawn and
the coefficients of the equations are determined. The pressure distri-
bution obtained is presented in figure 7 and is compared with the pres-
sure distribution obtained from the exact method.

For the back part of the body where the flow differs slightly from
parallel flow, a cylindrical body with uniform flow at different Mach
numbers can be considered as the basic body. In each region of the
flow the Mach number for the basic flow is constant; however, the com-
ponent u can be approximated conveniently by changing the basic-flow
Mach number.

When the body has a tail, a conical solution as proposed in refer-
ence 6 for flow inside a tube can be assumed as the basic body. In this
case, each streamline of the conical solution can be considered as the
shape of the basic body (fig. 8), and the flow field can be obtained
from conical-flow calculations, which can be determined easily in the
hodograph plane. By changing the strength of the final shock of the
conical solution, different ratios between maximum cross-sectional area
and tail area can be obtained. Any part of the streamline can be
assumed as the basic body shape.

The present method does not require the existence of a linearized
solution and, therefore, can be applied also at high Mach numbers.
This method permits obtaining the shape of the shock wave and taking
into account entropy variations. High precision can be obtained by
using several basic flow fields for the different regions of the body
congidered. Because of the gimplicity of the calculations, the system-
atic calculations and tabulation of coefficlents of equations (58) for
different cones and different Mach numbers would be of great practical
interest.

Tabulated values can be obtained also in the following way: For
each cone OC of cone angle @, considered, a superposed flow must be
calculated as shown, for example, in figure 9(a). The values of vy
and Py for this superposed flow are obtained at given points of the
characteristic net. Because of the linearization of equations, if the
superposed flow changes in intensity, the values of vV, and @l at

every point change proportionately. Because of the conical property,
if the point A (fig. 9(b)) moves along OC, the flow field changes in
scale; therefore, the effect on a point E due to the superposed flow
field Aml starting at A 1s equal to the effect of a linearized flow
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field starting at A' and of intensity A@l at a corresponding
point E' defined by

Therefore, when the flow field for the disturbance AB is determined,
the effect of any disturbance of the type of the disturbance AB in the
entire flow field can be obtained. Then any body shape can be con-
sidered as a superposition of flow fields of the type of flow corres-
ponding to the disturbance Ay placed along the basic cone. From the
simple calculation of the flow for the shape AB, the velocity can be
determined by means of the equation

where n is the number of the superposed flows that affect the point
considered. :

Consider, for example, figure 10. Several linearized flow dis-
turbances must be superposed on the basic conical flow field. First,
a superposed conical flow at 0 that can be obtained from conical-flow
calculations must be considered. At Ao a superposed disturbance must

be added in order to satisfy the boundary conditions at A. If the
calculations have been performed for the disturbance at a. and

for Aml = 1, the velocity at A can be obtained from

O

= (o), + (Y1), + (Va),
where (VO)A is the velocity of the basic flow at A, (vl)A is the

velocity disturbance at A due to the conical flow superposed at O,
and (VQ)A is proportional to

31
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and éan be obtained from

(%2)
v A - (v
(Vz)_ ). (v2),
where b 1is determined by
vXAo _ X Ip
Xao Xb y'b '

In a similar way V, 1s determined at the points B, C, and so forth.
At B another linearized flow field having velocity components V3
and m3 must be considered where

(%35 =% [0y * (1) ™ (%2)]

and

where b 1is defined by

Because of the rapidity of calculation, the variation of any geometrical
parameter can be investigated in practical applications without the
necessity of a large amount of numerical work.
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Conical Flow Field without Axial Symmetry

The calculation of slender bodies without axial symmetry requires
the determination of conical flow without axial symmetry, which can be
done by means of the linearized characteristic method. The basic prob-
lem of the determination of conical flow consists in determining the
shape of the conical shock wave produced by the body. When the shape
of the shock is determined, the flow field around the body can be
obtained by means of numerical calculations (see, for example, refer-
ence 4).  Because the relation between the shape of the body and the
shape of the shock wave is not known a priori, the method of linearized
characteristics can be particularly useful for flow determination of
this kind. An approximate shape of the shock wave is assumed as the
basic solution and the flow field inside the shock is determined; then
a linearized flow field is superposed in order to satisfy the boundary
conditions at the body. The calculations are simple if the basic flow
can be determined analytically or numerically without a large amount of
calculation, For example, for slender bodies the basic flow can be the
axially symmetric flow for which values are available in tabulated form.
Consider a conical shock wave which can be defined in polar coordinates
as

Vg = (Wo)s + E;: (Wn)s cos nb + Eg: (wm)s sin mo (60)

where all the values of Wn and vm are small so that terms of the

order of an‘ can be neglected. Such a shock wave 1is approximately of

circular cross section, as is found for slender conical bodies. If the
flow is assumed to have a symmetry plane, the second summation of equa-
tion (60) is equal to zero.

The velocity components in the radial direction (vr)l, in the
tangential direction (VT)l, and in the direction normal to the
shock (VN)l in front of the shock wave are (see fig. 11):.

N

Vl cos ¥

vV, sin ¥ cos‘a - S - (61)

Vv, sin ¥ gin a
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where all the velocity components are referred to the limiting velocity
and a is the angle of the dihedral between the plane normal to the
shock wave and the plane containing the reference axis. Across the
shock wave the following relations are valid:

(w)y (), = 53 - (0),2 - (), ?)
= ; :_ i(l - Vlacosas}'l - Vlzsinztll sin2u.)
> (62)

v ) oy -1 (1 - Vlecosexlf - Vlzsinad/ sinaa.)
(n2 7 +1 V, sin ¥ cos a

(VT)]_ N (vT) 2

(Vr)]_ = (Vr)2 J
If the velocity components Vys Vo and w of the flow field in polar

coordinates are considered at each point ¥ = Wo + E nﬂrn cos né
(fig. 11),

= Vl cos \lf . (638,)

<
H
H
N’
<
]
H<
[

y -1 Q- Vlgcoseﬂf - Vlesin2\lr sinza)
1

. . .2
v, ol ¥ V{ sin ¥ sin®a  (63b)
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(w),l, = -Vqy sin ¥ sin a cos a +

Y- l(l - Vlacosatlf - Vlzsing\l( sinea) sin a (63c)
~y + 1 V, sin ¥ cos a

but

av n\lfn' gin noé
A = — - ————e
gin V d6 Z sin ¥

Therefore, the velocity components behind the conical shock wave of
equation (60), if terms of the order of an are neglected, are

-
(vr)ws =V Cos(‘lfo)s -V s:Ln(iro)B z (\Vn)s cos né
2 2
o - 72 o),
D/, y+1 V; sin(\yo)s
. > (64)
1 - V,2cos2(V
Y : 1‘ cos (¥,) (27 - 1 :S ( 0)5 Z (%), cos 1o
¢ ° vy sin® (%)

1 - v,2c0s?y

- l/ 1 Og

(wy = |vy -2 E n(V sin né
g 175+ l\ vy sina\llos ( n)s
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Then, the velocity components behind the shock defined by equation (60)

can be expreSsed as:

v (vro)w + Z{:.(Vn)s<vr)n cos né

o} o}

N
<
H
S’
It

(vn) = (vno)W, + }:: (Wh)s(vn)n cos né >

wyn sin né

=
&

1]
—~
B’E‘
~

4]
(-

where vy , Vp, (vr)n, (vn)n, and w, are independent of 6,

o
vro and vno correspond to the flow field for circular conical

(65)

~ ghock Vo » and (vr)n, (vn)n, and. (w)n at the circular cone V¥ ='Vos

are independent of n and are defined by

Evr);l%s V1 el Wos B (Vno>\lfos

H

_ 2 2y ov.
_ y - 1 c \V o 1 - Vl cOos OS _ ( no>
SVn)I]wOS y ¥ 1 08( o)s 1 WOS

V) sin?y,_ o
_ 0

fw)é]wos =V (;in Wo)

Og ]
and

<8vné> Ve, * Vn cot ¥,
= |-V, =
a\‘)’ .q,os O 1. vn02
T2
_ o Vo

\

(66)
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It can be shown that the flow field defined as in equation (65) satis-
fies the boundary at a surface of a conical body defined by

Vo = WOC + }Z: Wnc cos né (67)

2
_ Ie
higher are negligible with respect to terms of the order of Wn. At

if the terms Wnc are small and quantities of the order of V¥ or

the surface of the body the velocity must be tangent to the surface of
the body; therefore, at each point A of the body

(Zg) ; de _j{: anC gin neé
A

V/A sin ¥, a ‘_ sin ¥

and, therefore, the boundary conditions can be expressed in the approxi-
mation considered as

vy

(VD>W = (v?0>v + <—S$9>W EE: (Wn)c cos nf +
Z I:(vn)r;I\VOC(Wn)S cos nf

) (g, (¥)g(¥m) gaPetnn0

sin WC

where the subscript WOC indicates quantities at the surface of the
basic circular body and WC indicates quantities at the surface of the
conical body considered where the parameters (Wn)s are given by equa-

tion (60) and define the shape of the shock. Because each term of the
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right-side summation is of the order of (Wn)e, the boundary conditions v
are

(vno>wo =0

g (68)

(), [l = ( :°>w e

Equations (68) show that the basic flow defined by the components Vrg

and n, is the flow corresponding to a circular cone of angle Vo
and permits relation of the equation of the conical shock to the equa-
tion of the conical body. The coefficients (vr)n (vn) ;, and (w)p

for different values of n can be determined for a given free-stream
Mach number and value of (V) o O (\lro) ; therefore, from equa-

tions (60), (65), (67), and (68), the flow field around any conical body
of the type given by equation (67) can be obtained when the terms (\lfn)

Cc
are small.

The determination of the quantities (vr)n, (Vn) , and (w) as
n

functions of V¥ can be obtained from the following equation (see refer-
ence 3):

2, .2 dv 2>
Vo F nf; _ 'n ow _ W .
Vr<2 - T) + Vv cot ¥ + a\lf <l v + in vap T (1 a—-2>

nfow ovy -
<8‘If sin WBB) ° v (69)
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Equation (69), because of expressions (65), gives

B(VH) Vn 2
(Vz)o * =55 <1-;;g_ i

2v. v + V cot V¥
-1 T n
(vn), |cot ¥ + Ielo + 7 vy 3 -
ao aol" 0 vn 2
1 - (0]
a 2
o
_ 91 Vp + vy cot ¥ n2w
(Vr) 1+2=-1 % Vp Vp 2\ . n (70)
n a N v 2 o o sin ¥
0 110
1- -2
=10

Because of the approximation considered, the entropy remains constant
in each meridian plane outside of a vorticose layer of infinitesimal
thickness around the body (see reference 3). Indeed,

?‘i%gdnsm‘”av rg%xf-vnggnwwsmmvnwcosv (1)
and
vnsiniy-a—s‘}=-wgg (72)
oS

From equation (71) there results S of the order of (’tlfn) ;3 there-
s

fore, where v, #£ 0, g_\lsr is of the order of \lrn2 and can be neglected.

Then

cey Ty, W O
= -Vp X Bﬂr+sln11f86 + Vv wecot\lf (73)
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or, in the approximation considered,

Vy = —— | . (7h)

ov
Then vy + S?E is the radius of the hodograph diagram in the plane

6 = Constant (see reference 4) and (vn)n and (vr)n can be obtained

from a step-by-gstep calculation from V = \lfos “to Wo = \lfOC by means

of the equations

_ L - _ |
R P A A Pt |

> (75)
v\ ] = —Vn | sin(-AV¥) - R - - 1 . s(-ay)
_( r)ri_‘lf—A\lf ( )n_\y fn ( )I_IJ\U o + (Rn)\k

where Ry at station V¥ is obtained from equation ( 70) and

v

a n - .
BR)nz]qﬁ ':(Vr)n + (B_\If)n/'w :' - . ’(76)

can be calculated from the values of (vr)n, (vn)n, and (w), at V.

The value of Ew)n]w AV can be obtained from

: . :
[(,W)I;IW—A'\V = BW)IH‘V - (B—\I”E)q, 2 | (77)
oW,

and (B—n) can be obtained from equation (71) where
viy
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S =8, +8; Z\vn cos né (78)

and S, is independent of ¥ and can be determined from the equationé
of the shock from the expression

5 = (ds___>
1 av
Sly

where WS is the inclination of the shock. Then

Og

a 2 W, .
- ;%— 8) = vy, sin ¥ S@E + vro(vr)n + vno(vn)n +

vrowh sin ¥ + Vnowh cos ¥ (79)

while, if the quantity Sl is neglected and the flow is considered
potential flow,

(vr)n

gin ¥

(80)

'w‘n = -

The method presented has been applied to the determination, for the con-
dition of zero angle of attack, of the flow field around a cone having
an elliptical cross section with axes in the ratio of about 1 to 3, for
which experimental data were available at M = 1.8, and for a cone of
elliptical cross section of ratio 1 to 1.88. The calculations have
been performed in the following way: The bodies are shown in fig-

ures 12(a) and 12(b). The value of ¥ at 6 = 0° is equal to 6.3°,
while the value of ¥ at 6 = 90° is equal to 18.4°.

The angle V¥ can be expressed as

Yo = wbc + wlC cos 20 + wéC cos 46 + W3C cos.66 +

th cos 86 + ¢5C cos 106 (81)
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but

zg: tan Wn ®

tan ¥ = tan Wb + 5
cos“Y,

therefore, by determining the value of V¥ at six points, the following
values have been obtained: If WOC = 109,

W%:=-50W
Voo = 1.94°
¢3C = -0,84°
wﬁc = 0.43°
wsc = -0.16°

Therefore, a 10° cone at zero angle of attack is assumed as the basic ,
body. Reference 5 gives tabulated values for a 10° cone at M = 1.816 -

and the calculations have been performed at this Mach number. The
table gives .

Vo= 34,45°

s

The entropy variations S, are small and are neglected. . Then,

(vr)nS = =0.01L5
= 0.02

(W)nS 55

(Wn)n = 1.285
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The values of (vr)n, (vn)n, and (w), Dbetween WOS and WOC have
been determined by means of equations (70), (75), and (80). Then Wls,
WES, and W5s have been determined from equations (68) where

ov.
( no> - 'g(vr ) = -2 x 0.6000
oV 0 Ol ‘

(¢] (e}

The values of WS obtained are:

wis = -0.24°

Wes = 5.1° x 1073
¥ - _1.7° x 107¥
whs = 7.4° x 1076
.w5s = -39 x 10~7

As is shown from the analysis of the values of wé and Wb, the shock

is very close to a circular shock wave even for large departure of the
body from the circular cross section, and the effect of the terms corre-
sponding to n = 6, 8, and 10 is very small. The velocity components
at the surface of the body are obtained from equation (65) at ¥ = ¥,

and the pressure distribution presented in figure 13 is obtalned. In

the same figure, the pressure distributions obtained by using the same

calculated values of (Vr) s (vn) , and (w), for M =1.81 around
n n

an elliptical cone with a cross section having axes in the ratio of 1
to 1.88 are also shown, The conical body having an ellipse of axis
ratio 1 to 3 has the same cross-sectional area as a circular cone

of WO = 119, Its pressure drag obtained from this calculation

is Cp = 0.099, in comparison with 0.12 for the circular cone. The

conical body having as cross section an ellipse with axes in the ratio
of 1 to 1.88 has a drag coefficient of 0.103, while the equivalent
circular cone of V¥, = 10° 30t has Cp = 0.115. Therefore, those




Lk NACA TN 2515

calculations indicate that conical bodies of circular cross section
have larger drag than cones of elliptical cross section.

The results obtained agree well with the experimental results,
also, if the body shape chosen requires large values for the-
angle (Wn)c. With the same flow fields (vr) , (vn) , and (w),, any
n n

other conical shape having two planes of symmetry represented by an
equation (81) when ¥, d1s 10° can be obtained at M = 1.816. If the

flow has only one plane of symmetry, only the terms in cos 8, cos 30,
and so forth, must be considered; while, if no symmetry exists, terms
in sin nf@ and cos n® must be considered.

The flow fields defined by (vr) , (Vh) , and (w), can be
n n

obtained and given in tabulated form without a large amount of numerical
work as for circular cones, and, therefore, the determination of conical
bodies can be performed without difficulty in a very short time.

When the shock shape is somewhat different from a cone having
circular cross section, the basic flow field must be different from the
axially symmetric. However, if the basic conical-flow components are
expressed in the form

Ve = vr.a + vrbf(e) .
v, = vna + vnbf(e) .
w = w'(6)

the basic flow can still be obtained by solving numerically the equa-
tions of motion in two meridian planes, and, therefore, the basic flow
can be determined exactly. For conical flow the linearized method can,
then, have wide application to any form of boundary conditionms.

Flow Fields Around Slender Bodies without Symmetry

When the conical flow is determined, the method of characteristics
can be applied to the determination of slender bodies. The equations
used are similar to the equations for circular bodies at angles of
attack, and can be directly derived from those equations (reference 2). .

Few values of n are required for the determination of the flow
field, and one set of calculations can be used for several bodies having .




NACA TN 2515 45

thelsame basic body; therefore, the method can be of interest for prac-
tical applications.

Quasi~Two-Dimensional Flow Fields

In many general three-dimensional flow fields of practical interest
the flow is not too different from a two-dimensional flow, and, there-
fore, the velocity field and entropy field can be expressed as in equa-
tions (1) and (2) with good practical approximation. Flow fields of
this kind are found, for example, in wings having plan forms which can
be considered close to the two-dimensional type with some twist or a
variation of thickness distribution along the span. Flow fields of
this kind can be consgidered also in some problems in which interference
between a wing and a two-dimensional tail (downwash effects) or between
a two-dimensional wing and a body is considered. In all these problems
of practical interest for the airplane design, the component w in the
direction of the span of the wing can be considered small; therefore,
equation (1) can be used and the components Uy and vy depending on

the three-dimensional effect can also be considered small.

Equation (17) expressed along the characteristic line of the first
family A, = tan (Bo + Qo> in the plane 2z = Constant is:

_ dwy 1 tan B, sin B,

B+ lg
+ @l +==C,

Vo dx °aq 7R 1 v, dz Vo cos(@, + B,)
(82)

while along the second characteristic line ip = tan(@o - Bo) the

following equation is valid:

2
av d in das V' a t i

_L. l+tanBo Cpl+S BO l—q)132+—iC2=wlL anBosnBO

VO dx dx 7R dx VO dz VO c03<cpo - BO)
(83)

where B), By, C;, and C, are defined by equations (20). Along each

streamline s,
2

d.Wl _ aVl N le aO (8)4-)
ds oz oz 7RV,

0
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Equations (82), (83), and (84) permit the determination of the flow
field by relatively simple procedures.

Consider, for example, a wing having twist, variable profile dis-
tribution, and variable chord, as shown in figure 1l4. The wing can be
analyzed by means of the linearized characteristics method in the fol-~
lowing way: First, the root and tip profiles are considered. Section
and section b have different relative thicknesses and chords.

If the variation from a to b 1is linear, the properties of a
two-dimensional cross section at any station ¢ can be obtained by
means of linear interpolation between the corresponding values at a
and b.

The profiles a and b are analyzed by means of two-dimensional-
flow theory and the characteristic net, and the values of the coef-
ficlents ®», Bo, Cy, and C, are determined from two-dimensional

considerations. If entropy effects are neglected or incorporated in
the linearized flow, the coefficients B,, B,, C;, and C, can be

determined as for the case of two-dimensional potential flow at each
point of the axis (equations (29), (30), and (34)) and are constant
along characteristic lines of the first family. Then the linearized
flow is defined as the flow that considers the three-dimensional effects
and the entropy distribution. Therefore,

~
u = uo(x:Y)z) + aul(x)Y)Z)

v = VQ(X)Y:Z) + av]_(x)y)z) r (85)
W= awl(x):)')z) J

where u, and v, are the potential-flow solutions in the plane

z = Constant and satisfy the boundary conditions in the plane
z = Constant, u; and v; are the components due to the presence

of w; (and of the variation of entropy), and a can be a coefficient,

for example, proportional to the twist distribution or to the thickness
variation. Because u, and v, are functions of x, Yy, and 2z, while

o
for the basic flow they have been determined from two-dimensional con-
giderations, é&g and éXg are not zero; therefore, equation (22)

dz dz

becomes

ow Wu , oWV u Yo, ov
0sg OxV oyV ¥ N dz




NACA TN 2515 k7

or
an - BVO + BV]_ + BSl 8,2' (86)
dsg Oz oz oz YRV
N, . s . :
where 3__ igs the variation of the veloclity component for the basic
z
flow.

When w; 1s considered small, in all the flow field the terms

20w QU ang 2V OV cap gtill be neglected in the differential equa-
a® dz a dz

tions along the characteristic lines, and, therefore, equations (82)
and (83) are still valid.

At each plane =z = Constant, the characteristic net is known;
therefore, the intersections of the shock wave for the total flow with
a plane y = Constant can be determined from characteristic calcu-~
lations. If O is a point at the leading edge of the wing (fig. 14(b)),
the shock wave at O can be obtained from shock-wave considerations and
from the boundary conditions because & at O is known, and at O the
shock is two-dimensional. Therefore, the velocity components uy

and v; at O are zero, while %K— is given by equation (86). If the
So
plane x = x, 1is assumed to be close to the plane x = X,, the charac-

teristic lines BA and CA can be drawn in any meridian plane considered
for the basic flow.

At the point O, V, 1is zero and, in the neighborhood of O along
the shock L the velocity can be expressed as

(V) =t AL (87)

Now, along the shock wave the direction of the velocity behind the shock
is related to the intensity from the equations of the shock wave; there-

fore, the direction Ql = S%l along the shock and the shape of the
) oV, ) oV,
shock as a function of S are determined when Si— along the shock

is known.
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If fhe velocity V; at a point A of the body is

ov
(V1), = Ss—l As (88)

then the velocity at C and B can be determined as a function

ov.
of —% from equations (82) and (83), because the value of w, at A

Os

Q/

is given from equation (86) and is known, and the value of S, o be
. z

obtained from the value of wy at A 1in several planes 2z = Constant.

If in equations (82) and (83) the values of Vi, 8y, and 9 at

B and C are expressed by means of equation (87) and of the equations
of the shock waves which give the coefficients of the expressions

o g

ox oL dx

oy _ 3Py oy
ox oV, ox

dx vy dx
- ov ov
then equations (82) and (83) give two relations between E—L and Sfl’
] 8
vy ovy .
and, therefore, S—— and —— can be determined.
s

The equation of the shock wave can relate u as a function of v,
or Vl as a function of P without the necessity of the component w,

because the component w 1is proportional to the inclination 1 of the
tangent to the shock with the plane x = Constant, and Vl and ¢, are

2

functions of M, cos g, but M, cos q = M( - %r> = M, in the approxi-

mation considered here (fig. 14(c)). The components u and v at B
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and the position of B havirg been determined, in each meridian plane
z = Constant, the intersection of the shock in the plane y = Constant
is obtained and w at B determined. Then a point D is interpolated
in each meridian plane and the point E is obtained. Then point F is
determined. In order to obtained (w)y, the streamline DF' for the

oz

In a similar way, all the flow field can be obtained. The line TT!
defining the plan form in figure 14(a) must be outside of the Mach
conoid from T. Because few points along each profile are required, the
largest amount of work for such a calculation is represented by the con-
struction of a basic characteristic net which permits obtaining points
which simplify the determination of w. By changing the value of the
coefficient a, different thickness distributions or different twists
can be considered. The new distributions must be obtained by changing
proportionately the variation of thickness or twist with respect to the
basic wing and by varying in proportion the value of a.

ov
bagic flow must be drawn and (——9 interpolated between F' and E.
o

CONCLUDING REMARKS

The method of characteristics for supersonic flow has been simpli-
fied by assuming that one of the velocity components or the effect on
the velocity components due to variation of one physical parameter is
small, so that the square of the velocity components considered small
can be neglected. By means of this simplification, the flow field can
be represented as the superposition on a basic flow field (which is not
linear and must be determined by the method of characteristics) of
linearized flow fields which are defined by a differential equation
with variable, but known, coefficients.

The calculations of these linearized flow fields can be performed
along the characteristic net of the basic flow field. The method has
been applied (a) to the two-dimensional flow with entropy gradient,
which has been transformed to a basic potential flow on which a line-
earized flow due to the entropy gradient is superposed, (b) to axially
symmetric problems where conical or cylindrical flows are considered
as the basic flow, (c) to the determination of the flow field around
cones or slender bodies without axial symmetry, and (a) to particular
three-dimensional flows which can be simulated as a basic two-
dimensional flow on which three-dimensional linearized flows are super-
posed. Application (b) permits obtaining in a simple way the flow
field around bodies of revolution without using linearized theory, and
indicates the possibility of using tabulated values for such determi-
nation. Application (c) permits the determination of flow fields not
yet determined by the method of characteristics. Any such conical
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flows can be determined by using tabulated values that can be obtained
as for cones of circular cross section at small angles of attack. The
application in (d) can be of interest for wings of approximately two-
dimensional form having twist or thickness variation along the span and

to interference problems.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., July 24, 1951
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Figure 12.~ The elliptical cones analyzed.
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(b) Wing cross section at a plane =z = Constant.

:

(c) Shock-wave calculation at the leading edge.

Figure 1h4.- Determination of the flow around a three-dimensional supersonic
wing.
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